

Rudi Mathematici

$x^{4}-8228 x^{3}+25385534 x^{2}-34806653332 x+17895175197705=0$

PROGRAMMERS ENGINEERS UNICORNS

1		(1803) Guglielmo Libri Carucci dalla Sommaja (1878) Agner Krarup Erlang (1894) Satyendranath Bose (1912) Boris Gnedenko	RM132 RM168
2		(1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko	
3		(1917) Yuri Alexeievich Mitropolsky	
4		(1643) Isaac Newton	RM071
251	I	(1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan (1871) Federigo Enriques (1871) Gino Fano	RM084
6		(1807) Jozeph Mitza Petzval (1841) Rudolf Sturm	
7 W	W	(1871) Felix Edouard Justin Emile Borel (1907) Raymond Edward Alan Christopher Paley	
8	T	(1888) Richard Courant (1924) Paul Moritz Cohn (1942) Stephen William Hawking	RM156
9	F	(1864) Vladimir Adreievich Steklov (1915) Mollie Orshansky	
10		(1875) Issai Schur (1905) Ruth Moufang	
11	S	(1545) Guidobaldo del Monte (1707) Vincenzo Riccati (1734) Achille Pierre Dionis du Sejour	RM120
312 M	M	(1906) Kurt August Hirsch (1915) Herbert Ellis Robbins	RM156
13	T	(1864) Wilhelm Karl Werner Otto Fritz Franz Wien (1876) Luther Pfahler Eisenhart (1876) Erhard Schmidt (1902) Karl Menger	
14	N	(1902) Alfred Tarski	RM096
15	T	(1704) Johann Castillon (1717) Mattew Stewart (1850) Sofia Vasilievna Kovalevskaja	RM144
16	F	(1801) Thomas Klausen	
17	S	(1647) Catherina Elisabetha Koopman Hevelius (1847) Nikolay Egorovich Zukowsky (1858) Gabriel Koenigs	
18	S	(1856) Luigi Bianchi (1880) Paul Ehrenfest	
$\begin{array}{cc}4 & 1 \\ & 20 \\ & 21 \\ & 22 \\ & \\ & 2 \\ & \\ & 2 \\ & \\ & 2\end{array}$	M	(1813) Rudolf Friedrich Alfred Clebsch (1879) Guido Fubini (1908) Aleksandr Gennadievich Kurosh	
	T	(1775) André Marie Ampère (1895) Gabor Szegő (1904) Renato Caccioppoli	RM072
	N	(1846) Pieter Hendrik Schoute (1915) Yuri Vladimirovich Linnik	
	T	(1592) Pierre Gassendi (1886) John William Navin Sullivan (1908) Lev Davidovich Landau	RM063
	F	(1840) Ernst Abbe (1862) David Hilbert	RM060
	S	(1891) Abram Samoilovitch Besicovitch (1914) Vladimir Petrovich Potapov	
	S	(1627) Robert Boyle (1736) Joseph-Louis Lagrange (1843) Karl Hermann Amandus Schwarz	RM048
5 26 1 27 28 29 30 31	M	(1799) Benô̂t Paul Émile Clapeyron (1862) Eliakim Hastings Moore	
	T	(1832) Charles Lutwidge Dodgson	RM108
	N	(1701) Charles Marie de La Condamine (1888) Louis Joel Mordell (1892) Carlo Emilio Bonferroni	
		(1817) William Ferrel (1888) Sidney Chapman	
	F	(1619) Michelangelo Ricci	
		(1715) Giovanni Francesco Fagnano dei Toschi (1841) Samuel Loyd (1896) Sofia Alexandrovna Janowskaja (1945) Persi Warren Diaconis (1900) John Charles Burkill (1522) Lodovico Ferrari	RM180

Putnam 2000, A1

Let A be a positive real number. What are the possible values of $\sum_{i=0}^{\infty} x_{i^{2}}$, given that x_{0}, x_{1}, \ldots are positive numbers for which $\sum_{i=0}^{\infty} x_{i}=A$?

English Jokes that only intellectuals understand
It's hard to explain puns to kleptomaniacs because they always take things, literally.

Headlines from a Mathematical World
After Switch in Standardized Tests, Scores Drop.
Mathematical World: After Switch in Standardized Tests, Scores No Longer Directly Comparable.

Alice laughed: "There's no use trying," she said; "one can't believe impossible things."
"I daresay you haven't had much practice," said the Queen. "When I was younger, I always did it for half an hour a day. Why, sometimes I've believed as many as six impossible things before breakfast.".

Charles Lutwidge Dodgson

If you want to inspire confidence, give plenty of statistics. It does not matter that they should be accurate, or even intelligible, as long as there is enough of them.

Charles Lutwidge Dodgson

A formal manipulator in mathematics often experiences the discomforting feeling that his pencil surpasses him in intelligence.

Howard W. Eves

One can measure the importance of a scientific work by the number of earlier publications rendered superfluous by it.

David Hilbert

Depriving a mathematical of the chance to making demonstrations ad absurdum would be equal to tie the hands of a boxer behind his back.

David Hilbert

Actually mathematics require much imagination: it is impossible to be a mathematician without being a poet in soul.

Sofia Vasilievna Kovalevskaja
[said about the chemist Lavoisier:] It took the mob only a moment to remove his head; a century will not suffice to reproduce it.

Joseph-Louis Lagrange

1	S	(1900) John Charles Burkill	
62	M	(1522) Lodovico Ferrari (1893) Cornelius Lanczos (1897) Gertrude Blanch	
3	T	(1893) Gaston Maurice Julia	RM073
4	W	(1905) Eric Cristopher Zeeman	
5	T	(1757) Jean Marie Constant Duhamel	
6	F	(1465) Scipione del Ferro (1612) Antoine Arnauld	RM064
		(1695) Nicolaus (II) Bernoulli	RM093
7	S	(1877) Godfried Harold Hardy (1883) Eric Temple Bell	RM049
8	S	(1700) Daniel Bernoulli (1875) Francis Ysidro Edgeworth (1928) Ennio de Giorgi	RM093 RM133
$7 \quad 9$	M	(1775) Farkas Wolfgang Bolyai (1907) Harold Scott Macdonald Coxeter	RM097
10	T	(1747) Aida Yasuaki (1932) Vivienne Malone-Mayes	RM121
11	W	(1657) Bernard Le Bovier de Fontenelle (1800) William Henry Fox Talbot (1839) Josiah Willard Gibbs (1915) Richard Wesley Hamming	
12	T	(1914) Hanna Caemmerer Neumann (1921) Kathleen Rita Mcnulty Mauchly Antonelli	
13	F	(1805) Johann Peter Gustav Lejeune Dirichlet	RM145
14	S	(1468) Johann Werner (1849) Hermann Hankel (1877) Edmund Georg Hermann Landau (1896) Edward Artur Milne	RM063
15	S	(1564) Galileo Galilei (1850) Sophie Willock Bryant (1861) Alfred North Whitehead (1946) Douglas Hofstadter	RM085
816	M	(1822) Francis Galton (1853) Gregorio Ricci-Curbastro (1903) Beniamino Segre	
17	T	(1890) Sir Ronald Aylmer Fisher (1891) Adolf Abraham Halevi Fraenkel (1905) Rózsa Péter	
18	W	(1404) Leon Battista Alberti (1919) Clifford Truesdell	RM157
19	T	(1473) Nicolaus Copernicus	RM181
20	F	(1844) Ludwig Boltzmann	RM061
21	S	(1591) Girard Desargues (1915) Evgeny Michailovich Lifshitz	
22	S	(1857) Heinrich Rudolf Hertz (1903) Frank Plumpton Ramsey	
$9 \begin{array}{ll}9 & 2 \\ & \\ & \\ & 2 \\ & 25 \\ & 26 \\ & 29 \\ & 28\end{array}$	M	(1583) Jean-Baptiste Morin (1922) Anneli Cahn Lax (1951) Shigefumi Mori (1561) Henry Briggs	RM169
	T	(1871) Felix Bernstein	
	W	(1827) Henry Watson	
	T	(1786) Dominique Francois Jean Arago	
	F	(1881) Luitzen Egbertus Jan Brouwer	
	S	(1735) Alexandre Theophile Vandermonde (1860) Herman Hollerith	RM109

Rudi Mathematici

February

Putnam 2000, A2

Prove that there exist infinitely many integers n such that $n, n+1, n+2$ are each the sum of the squares of two integers.

English Jokes that only intellectuals understand
Three logicians walk into a bar. The bartender ask: "Do all of you want a drink?"

The first logician says: "I don't know"
The second logician says: "I don't know"

Headlines from a Mathematical World
Controversial Program Would Cost $\$ 50$ Million in Taxpayer Money.
Mathematical World: Controversial Program Would Cost 0.0001% of Taxpayer Money.

The Handmaiden of the Sciences. [Book by that title.] Eric Temple Bell

The cowboys have a way of trussing up a steer or a pugnacious bronco which fixes the brute so that it can neither move nor think. This is the hog-tie, and it is what Euclid did to geometry.

Eric Temple Bell

Hofstadter's Law: It always takes longer than you expect, even when you take into account Hofstadter's Law.

Douglas Hofstadter
[Asked for a testimony to the effect that Emmy Noether was a great woman mathematician, he said:]
I can testify that she is a great mathematician, but that she is a woman, I cannot swear.

Edmund Georg Hermann Landau

This article gives wrong solutions to trivial problems. The main mistake, however, is not new.

Clifford Truesdell

Mathematics as a science, commenced when first someone, probably a Greek, proved propositions about "any" things or about "some" things, without specifications of definite particular things.

Alfred North Whitehead

1 S	(1611) John Pell (1879) Robert Daniel Carmichael	
$\begin{array}{lll}10 & 2 & M\end{array}$	(1836) Julius Weingarten	
3 T	(1838) George William Hill (1845) Georg Cantor (1916) Paul Richard Halmos	RM062
4 W	(1822) Jules Antoine Lissajous	
T	(1512) Gerardus Mercator (1759) Benjamin Gompertz (1817) Angelo Genocchi (1885) Pauline Sperry (1915) Laurent Schwartz (1931) Vera Pless	
6 F	(1866) Ettore Bortolotti	
7 S	(1792) William Herschel (1824) Delfino Codazzi (1922) Olga Alexandrovna Ladyzhenskaya	RM146
8 S	(1851) George Chrystal	
$\begin{array}{lll}11 & 9 & M\end{array}$	(1818) Ferdinand Joachimsthal (1900) Howard Hathaway Aiken	
10 T	(1864) William Fogg Osgood (1872) Mary Ann Elizabeth Stephansen	
11 W	(1811) Urbain Jean Joseph Le Verrier (1853) Salvatore Pincherle (1870) Louis Bachelier	RM158
12 T	(1685) George Berkeley (1824) Gustav Robert Kirchhoff (1859) Ernesto Cesaro	
13 F	(1861) Jules Joseph Drach (1957) Rudy D'Alembert	
14 S	(1864) Jozef Kurschak (1879) Albert Einstein (1904) Lyudmila Vsevolodovna Keldysh	RM074
15 S	(1860) Walter Frank Raphael Weldon (1868) Grace Chisolm Young	
$\begin{array}{lll}12 & 16\end{array}$	(1750) Caroline Herschel (1789) Georg Simon Ohm (1846) Magnus Gosta Mittag-Leffler	RM146
17 T	(1876) Ernest Benjamin Esclangon (1897) Charles Fox	
18 W	(1640) Philippe de La Hire (1690) Christian Goldbach (1796) Jacob Steiner (1870) Agnes Sime Baxter	RM122
19 T	(1862) Adolf Kneser (1910) Jacob Wolfowitz	
20 F	(1840) Franz Mertens (1884) Philip Franck (1938) Sergi Petrovich Novikov	
21 S	(1768) Jean Baptiste Joseph Fourier (1884) George David Birkhoff	
22 S	(1891) Lorna Mary Swain (1917) Irving Kaplansky (1944) Margaret Hilary Ashworth Millington	
$\begin{array}{lll}13 & 23 & \mathrm{M}\end{array}$	(1754) Georg Freiherr von Vega (1882) Emmy Amalie Noether (1897) John Lighton Synge	RM050
24 T	(1809) Joseph Liouville (1948) Sun-Yung (Alice) Chang (1966) Gigliola Staffilani	RM142
25 W	(1538) Christopher Clausius	
26 T	(1848) Konstantin Andreev (1913) Paul Erdős	RM110
27 F	(1857) Karl Pearson	
28 S	(1749) Pierre-Simon de Laplace (1928) Alexander Grothendieck	RM086
29 S	(1825) Francesco Faà Di Bruno (1873) Tullio Levi-Civita (1896) Wilhelm Ackerman	RM170 RM098
$\begin{array}{lll}14 & 30 & \mathrm{M}\end{array}$	(1892) Stefan Banach (1921) Alfréd Rényi	RM134
31 T	(1596) René Descartes	

Rudi Mathematici

March

Putnam 2000, A3
The octagon $P_{1} P_{2} P_{3} P_{4} P_{5} P_{6} P_{7} P_{8}$ is inscribed in a circle, with the vertices around the circumference in the given order. Given that the polygon $P_{1} P_{3} P_{5} P_{7}$ is a square of area 5, and the polygon $P_{2} P_{4} P_{6} P_{8}$ is a rectangle of area 4 , find the maximum possible area of the octagon.

English Jokes that only intellectuals understand

Einstein, Newton and Pascal are playing hide and seek. It's Einstein turn to count so he covers his eyes and start counting. Pascal runs off and hides. Newton draws a one meter by one meter square in front of Einstein and stands in the middle of it. When Einstein uncovers his eyes, he sees Newton immediately and exclaims: Newton! I found you! You're hit!"
Newton smiles and says: "You didn't find me. You found a Newton over a square meter. You found Pascal".

Headlines from a Mathematical World

Poll Finds 2016 Candidates Neck and Neck.
Mathematically Literate World: Poll Finds 2016 Predictions Futile and Absurd.

Programming today is a race between software engineers striving to build bigger and better idiot-proof programs, and the Universe trying to produce bigger and better idiots. So far, the Universe is winning.

Douglas Adams

Nothing is easier than to assign Names, Signs, or Expressions to these Fluxions, and it is not difficult to compute and operate by means of such Signs. But it will be found much more difficult, to omit the Signs and yet retain in our Minds the things, which we suppose to be signified by them. To consider the Exponents, whether Geometrical, or Algebraical, or Fluxionary, is no difficult Matter. But to form a precise Idea of a third Velocity for instance, in itself and by itself, Hoc opus, hic labor. (...) To me it seems evident, that Measures and Signs are absolutely necessary, in order to conceive or reason about Velocities; and that, consequently, when we think to conceive the Velocities, simply and in themselves, we are deluded by vain Abstractions.

George Berkeley
[about him:] Tame at home and dominant among colleagues, joyful in mathematics and deadly serious in quarrels among mathematicians, he was the closest thing to a reincarnation of Alcibiades that the nineteenthcentury Germany could produce not only in its enthusiastic energy in daring to extreme, but also as fierce fighting when he was cornered - Alcibiades by Phrygians, Cantor by ideas.

Georg Cantor

Omnia apud me mathematica fiunt. [With me everything turns into mathematics.]

René Descartes

Rudi Mathematici

April

Putnam 2000, A4
Show that the improper integral

$$
\lim _{B \rightarrow \infty} \int_{0}^{B} \sin (x) \sin \left(x^{2}\right) d x
$$

converges.

English Jokes that only intellectuals understand A Roman soldier walks in a bar asking for a Martinus. "You mean Martini?" The bartender asks.
The Roman replies: "If I wanted a double, I would have asked for it!"
After some time, seeing a friend in the bar, the legionnaire holds up two fingers and says: "Five beers, please".

Headlines from a Mathematical World

One Dead in Shark Attack; See Tips for Shark Safety Inside.

Mathematically Literate World: One Dead in Tragic, Highly Unlikely Event; See Tips for Something Useful Inside.

There are some mysteries that the human mind will never penetrate. To be convinced we should not do anything else but throw a look at the tables of primes. We realize that there reigns no order or law. [1751]

Leonhard Euler

God does arithmetic.
Johann Carl Friedrich Gauss

Either mathematics is too big for the human mind or the human mind is more than a machine.

Kurt Godel

Geometry (which is the only science that it hath pleased God to bestow on mankind)...

Thomas Hobbes

Mathematics in general is fundamentally the science of self-evident things.

Felix Christian Klein

No mathematical research can be called real science if it can't be proven mathematically.

Leonardo Da Vinci
[Arithmetic] can only be considered a science of suggestions, to which the principles and operations of algebra adapt, but by which are neither limited or determined.

George Peacock

There can never be surprises in logic.
Ludwig Josef Johan Wittgenstein

Rudi Mathematici

May

Putnam 2000, A5
Three distinct points with integer coordinates lie in the plane on a circle of radius $r>0$. Show that two of these points are separated by a distance of at least $r^{1 / 3}$.

English Jokes that only intellectuals understand

Entropy isn't what it used to be.
 -

Headlines from a Mathematical World

Market Share for Electric Cars Triples.
Mathematically Literate World: Market Share for Electric Cars Rises to 0.4\%.
\qquad
A great deal more is known than has been proved.
Richard Phillips Feynman

When using a mathematical model, we must pay particular attention to the uncertainties of the model.

Richard Phillips Feynman

Universities hire professors the way some men choose wives - they want the ones the others will admire.

Morris Kline

How dare we speak of the laws of chance? Is this not the antithesis of all laws?

Bertrand Arthur William Russell

Cells and tissues, bones and shells, leaves and flowers, are simply various portions of matter, and it is in obedience to the laws of physics that their particles have been moved, modelled and standardized. No exceptions to the rule that God always geometrizes. Their shape problems are primarily mathematical problems, growth problems are essentially physical problems, and the morphologist is ipso facto a student of the physical sciences.

D'Arcy Wentworth Thompson

Nothing is more fruitful, all mathematicians know, than those vague analogies, those dark reflections that lead from one theory to another, those furtive caresses, those inexplicable discrepancies: nothing gives a greater pleasure to the researcher.

André Weil

2311	(1796) Sadi Leonard Nicolas Carnot (1851) Edward Bailey Elliott (1899) Edward Charles Titchmarsh	
2 T	(1895) Tibor Radó	
3 W	(1659) David Gregory	
4 T	(1809) John Henry Pratt (1966) Svetlana Yakovlevna Jitomirskaya	
5 F	(1814) Pierre Laurent Wantzel (1819) John Couch Adams (1883) John Maynard Keynes	RM065
6 S	(1436) Johann Muller Regiomontanus (1857) Aleksandr Michailovitch Lyapunov (1906) Max Zorn	RM185 RM077
7 S	(1863) Edward Burr Van Vleck	
$\begin{array}{llll}24 & 8 & \text { M }\end{array}$	(1625) Giovanni Domenico Cassini (1858) Charlotte Angas Scott (1860) Alicia Boole Stott (1896) Eleanor Pairman (1923) Gloria Olive (1924) Samuel Karlin	
$9 \quad$ T	(1885) John Edensor Littlewood	RM049
10 W	(940) Mohammad Abu'L Wafa Al-Buzjani (1887) Vladimir Ivanovich Smirnov	RM101
11 T	(1881) Hilda Phoebe Hudson (1937) David Bryant Mumford	
12 F	(1888) Zygmunt Janyszewski (1937) Vladimir Igorevich Arnold	
13 S	(1831) James Clerk Maxwell (1872) Jessie Chrystal Macmillan (1876) William Sealey Gosset (Student) (1928) John Forbes Nash	RM113 RM149
14 S	(1736) Charles Augustin de Coulomb (1856) Andrei Andreyevich Markov (1903) Alonzo Church	RM125
$\begin{array}{\|lll\|}25 & 15 & \end{array}$	(1640) Bernard Lamy (1894) Nikolai Gregorievich Chebotaryov	
25	(1915) John Wilder Tukey	
	(1898) Maurits Cornelius Escher	RM097
18 T	(1858) Andrew Russell Forsyth (1884) Charles Ernest Weatherburn (1884) Frieda Nugel (1913) Paul Teichmueller (1915) Alice Turner Schafer	RM148
19 F	(1623) Blaise Pascal (1902) Wallace John Eckert	RM053
20 S	(1873) Alfred Loewy (1917) Helena Rasiowa	
21 S	(1781) Simeon Denis Poisson (1828) Giuseppe Bruno (1870) Maria Skłodowska Curie	RM182
2626 2 23 2 2 26 2 28	(1822) Mario Pieri (1864) Hermann Minkowsky (1910) Konrad Zuse (1932) Mary Wynne Warner	
	(1912) Alan Mathison Turing	RM089
	(1880) Oswald Veblen	
	(1908) William Van Orman Quine	
	(1823) William Thomson, Lord Kelvin (1918) Yudell Leo Luke	RM161
	(1806) Augustus de Morgan	
	(1875) Henri Leon Lebesgue	RM173
27 29 M	(1888) Aleksandr Aleksandrovich Friedmann (1979) Artur Avila Cordeiro de Melo	$\begin{aligned} & \hline \text { RM101 } \\ & \text { RM189 } \end{aligned}$
30 T	(1791) Felix Savart (1958) Abigail A Thompson	

Rudi Mathematici

Putnam 2000, A6

Be $f(x)$ a polynomial with integer coefficients. Define a sequence of integers a_{0}, a_{1}, \ldots such that $a_{0}=0$ and $a_{n+1}=$ $f\left(a_{n}\right)$. Prove that if there exists a positive integer m for which $a_{m}=0$, then either $a_{1}=0$ or $\alpha_{2}=0$.
\qquad -
English Jokes that only intellectuals understand
Werner Heisenberg, Kurt Gödel and Noam Chomsky walk into a bar. Heisenberg turns to the other two and says: "Clearly this is a joke, but how we figure out if it's funny or not?".
Gödel replies: "We don't know that because we're inside the joke". Chomsky says: "Of course it's funny. You're just telling it wrong".

Headlines from a Mathematical World

Still No Scientific Consensus on Global Warming.
Mathematically Literate World: Still 90% Scientific Consensus on Global Warming.

The motto that I would adopt against a path designed to stop the progress of the discoveries would be "remember square root of -1 "

Augustus De Morgan

A distinctive feature of mathematics is that it does not use all those long and difficult names like the other sciences. Indeed, it is more conservative than other sciences, as it clings tenaciously to the old terms.
E. Kasner, J.R. Newman

Perhaps the greatest paradox is that there are paradoxes in mathematics.
E. Kasner, J.R. Newman

It has been pointed out already that no knowledge of probabilities, less in degree than certainty, helps us to know what conclusions are true, and that there is no direct relation between the truth of a proposition and its probability. Probability begins and ends with probability.

John Maynard Keynes

In passing, I firmly believe that research should be offset by a certain amount of teaching, if only as a change from the agony of research. The trouble, however, I freely admit, is that in practice you get either no teaching, or else far too much.

John Edensor Littlewood

I read in the proof sheets of Hardy on Ramanujan: "As someone said, each of the positive integers was one of his personal friends." My reaction was, "I wonder who said that; I wish I had." In the next proof-sheets I read (what now stands), "It was Littlewood who said..."

John Edensor Littlewood

Putnam 2000, B1
Let a_{j}, b_{j}, c_{j} be integers for $1 \leq j \leq N$. Assume for each j, at least one of a_{j}, b_{j}, c_{j} is odd. Show that there exists integers r, s, t such that $r a_{j}+s b_{j}+t c_{j}$ is odd for at least $4 N / 7$ values of j.

English Jokes that only intellectuals understand
Pavlov is sitting at a pub enjoying a pint, the phone rings and he jumps out shouting: "Oh shit, I forgot to feed the dog!"'

Headlines from a Mathematical World

Economist: "Eliminate Minimum Wage to Create Jobs, Improve Economy".
Mathematically Literate World: Economist: "Eliminate Minimum Wage, then Pray Our Model Has Some Basis in Reality".

Historically speaking, it is clearly false that mathematics is free of contradictions. The non-contradiction seems more an objective to be achieved than a quality given by God once and for all. There is no well-defined demarcation between the contradictions that occur daily in the work of any mathematician - novice or master they all make mistakes more or less easy to find - and the paradoxes of greatest importance providing bread for the teeth of logics for decades and, in certain cases, for centuries.

Nicolas Bourbaki

We believe in the reality of mathematics, but of course when philosophers attack us with their paradoxes we rush to take shelter behind formalism and say: "Mathematics is just a combination of meaningless symbols" and pull out the chapters 1 and 2 of set theory. When you finally leave us in peace, we return to our mathematics and do as we always have, trying the feeling (that every mathematical experiences) to work with something real. Feeling that is probably an illusion, but very comfortable. This is the attitude of Bourbaki against the fundamentals.

Jean Alexandre Eugène Dieudonné

He who understands Archimedes and Apollonius will admire less the achievements of the foremost men of later times.

Gottfried Wilhelm von Leibniz

The art of discovering the causes of phenomena, or true hypothesis, is like the art of deciphering, in which an ingenious conjecture greatly shortens the road.

Gottfried Wilhelm von Leibniz

Mathematics honours the human spirit.
Gottfried Wilhelm von Leibniz

Putnam 2000, B2
Prove that the expression:

$$
\frac{\operatorname{gcd}(m, n)}{n}\binom{n}{m}
$$

is an integer for all pairs of integers $n \geq m \geq 1$.

English Jokes that only intellectuals understand

Helium walks in the bar and orders a beer, the bartender says: "Sorry, we don't serve Noble Gases here". He doesn't react.

Headlines from a Mathematical World

Illegal Downloaders Would Have Spent \$300 Million to Obtain Same Music Legally.
Mathematically Literate World: Illegal Downloaders Probably Would Not Have Bothered to Obtain Same Music Legally.

It appears to me that if one wishes to make progress in mathematics, one should study the masters and not the pupils.

Niels Henrik Abel

Mathematics is the tool especially suited for dealing with abstract concepts of any kind and there is no limit to its power in this field.

Paul Adrien Maurice Dirac

A book on the new physics, if it's not a pure description of experimental work, must be essentially mathematical.

Paul Adrien Maurice Dirac

A beautiful idea is much more likely to be right than an ugly idea.

Sir Roger Penrose

The notion of mathematical truth goes beyond the whole concept of formalism. In the mathematical truth there is something absolute and 'divine'.

Sir Roger Penrose

There is nothing that stimulates the creative process of a mathematician as the thought of immortality that gives the fact of having your name associated with a theorem.

Marcus Peter Francis Du Sautoy

Rudi Mathematici

September

Putnam 2000, B3
Let $f(t)=\sum_{j=1}^{N} a_{j} \sin (2 \pi j t)$, where each a_{i} is real and $a_{N} \neq 0$. Let N_{k} denote the number of zeroes (including multiplicities) in $L 0,1$) of $\frac{d^{k} f}{d t^{k}}$. Prove that:

English Jokes that only intellectuals understand
Schrödinger's cat walks into a bar. And doesn't.

Headlines from a Mathematical World

Market Rebounds after Assurances from Fed Chair.
Mathematically Literate World: Market Rebounds after Regression to the Mean.

Poincarés point of view of phase space has proven to be so useful that today it can be found in every field of science - and in fields that are not at all scientific. Jack Cohen, Terry Pratchett, Ian Stewart

Information is a useful concept, but it is curious that "To be or not to be" contains the same information according to Shannon, and less information according Chaitin, of "xyQGRlfryu \& sk0wc_\% d". The reason for this disparity is that information is not the same thing as meaning. This is fascinating. What really matters to people is the meaning of a message, not the number of bits, but mathematicians have not been able to quantify the significance. For now.

Jack Cohen, Terry Pratchett, Ian Stewart

The strangest number in the multiverse is not infinite, but one.

Jack Cohen, Terry Pratchett, Ian Stewart

I think the probability theory is the only branch of mathematics in which good authors often get completely wrong results.

Charles Sanders Peirce

Time was when all the parts of the subject were dissevered, when algebra, geometry, and arithmetic either lived apart or kept up cold relations of acquaintance confined to occasional calls upon one another; but that is now at an end; they are drawn together and are constantly becoming more and more intimately related and connected by a thousand fresh ties, and we may confidently look forward to a time when they shall form but one body with one soul.

James Joseph Sylvester

The importance of the "New Mathematics" lies mainly in the fact that it has taught us the difference between the disc and the circle.

René Thom

Rudi Mathematici

October

Putnam 2000, B4
Let $f(x)$ be a continuous function such that, for all x, $f\left(2 x^{2}-1\right)=2 x f(x)$. Show that $f(x)=0$ for $-1 \leq x \leq 1$.

English Jokes that only intellectuals understand
The programmer's wife tells him: "Run to the store and pick up a loaf of bread. If they have eggs, get a dozen".
The programmer comes home with 12 loaves of bread.

Headlines from a Mathematical World
Rates of Cancer Approach Historic High.
Mathematically Literate World: Rates of Surviving Long Enough to Develop Cancer Approach Historic High.

If God creates a world of particles and waves, dancing in obedience to mathematical and physical laws, who are we to say that he cannot make use of those laws to cover the surface of a small planet with living creatures?

Martin Gardner

The lady said, "If I understand correctly, you're good with numbers." "No, I'm good with math," Randy replied. "Is it not what I said?" "Oh, no! The mathematicians are as far as possible from the real and specific numbers. We like to talk about numbers without actually being exposed to them: for that there are computers".

Neal Stephenson

What a fabulous way to save effort! For me, "134 divided 29" meant a tedious chore, while 134/29 was an object without implied work. Excited I went to my father to explain my great discovery; he told me that of course it was so, that a / b and $a: b$ are simply synonyms. For him it was just a small change in notation.

William Paul Thurston

In things to be seen at once, much variety makes confusion, another vice of beauty. In things that are not seen at once, and have no respect one to another, great variety is commendable, provided this variety transgress not the rules of optics and geometry.

Sir Christopher Wren

Mathematics, among other things, teaches the persistence against the consequences, and rigor in following the path we have chosen arbitrarily.

Paul Valéry

Arithmetic is being able to count to twenty without taking off your shoes.

Mickey Mouse

He who can properly define and divide is to be considered a god.

Plato

	1 S	(1535) Giambattista della Porta	
45	2 M	(1815) George Boole (1826) Henry John Stephen Smith	RM094
	3 T	(1867) Martin Wilhelm Kutta (1878) Arthur Byron Coble (1896) Raymond Louis Wilder (1906) Carl Benjamin Boyer	
	4 W	(1744) Johann (III) Bernoulli (1865) Pierre Simon Girard	RM093
	5 T	(1848) James Whitbread Lee Glaisher (1930) John Frank Adams	
	6 F	(1781) Giovanni Antonio Amedeo Plana (1906) Emma Markovna Trotskaia Lehmer	RM154
	7 S	(1660) Thomas Fantet de Lagny (1799) Karl Heinrich Graffe (1567) Clara Immerwahr (1898) Raphael Salem	RM182
	8 S	(1656) Edmond Halley (1846) Eugenio Bertini (1848) Fredrich Ludwig Gottlob Frege (1854) Johannes Robert Rydberg (1869) Felix Hausdorff	RM190 RM178
46	9 M	(1847) Carlo Alberto Castigliano (1885) Theodor Franz Eduard Kaluza (1885) Hermann Klaus Hugo Weyl (1906) Jaroslav Borisovich Lopatynsky (1913) Hedwig Eva Maria Kiesler (Hedy Lamarr) (1922) Imre Lakatos	RM082 RM144
	10 T	(1829) Helwin Bruno Christoffel	
	11 W	(1904) John Henry Constantine Whitehead	
	12 T	(1825) Michail Egorovich Vashchenko-Zakharchenko (1842) John William Strutt Lord Rayleigh (1927) Yutaka Taniyama	
	13 F	(1876) Ernest Julius Wilkzynsky (1878) Max Wilhelm Dehn	
	14 S	(1845) Ulisse Dini (1919) Paulette Libermann (1975) Martin Hairer	RM189
	15 S	(1688) Louis Bertrand Castel (1793) Michel Chasles (1794) Franz Adolph Taurinus	
47	16 M	(1835) Eugenio Beltrami	RM150
	17 T	(1597) Henry Gellibrand (1717) Jean Le Rond D'Alembert (1790) August Ferdinand Möbius	RM166 RM118
	18 W	(1872) Giovanni Enrico Eugenio Vacca (1927) Jon Leslie Britton	
	19 T	(1894) Heinz Hopf (1900) Michail Alekseevich Lavrentev (1901) Nina Karlovna Bari	
	20 F	(1889) Edwin Powell Hubble (1924) Benoît Mandelbrot (1963) William Timothy Gowers	
	21 S	(1867) Dimitri Sintsov	
	22 S	(1803) Giusto Bellavitis (1840) Émile Michel Hyacinthe Lemoine	
48	23 M	(1616) John Wallis (1820) Issac Todhunter (1917) Elizabeth Leonard Scott	RM070 RM106
	24 T	(1549) Duncan Maclaren Young Sommerville (1909) Gerhard Gentzen	
	25 W	(1841) Fredrich Wilhelm Karl Ernst Schröder (1873) Claude Louis Mathieu (1943) Evelyn Merle Roden Nelson	
	26 T	(1894) Norbert Wiener (1946) Enrico Bombieri	RM172
	27 F	(1867) Arthur Lee Dixon	
	28 S	(1898) John Wishart	
	29 S	(1803) Christian Andreas Doppler (1849) Horace Lamb (1879) Nikolay Mitrofanovich Krylov	
493	30 M	(1549) Sir Henry Savile (1969) Matilde Marcolli	RM142

November

Putnam 2000, B5

Let S_{0} be a finite set of positive integers. We define finite sets S_{1}, S_{2}, \ldots of positive integers as follows: the integer a is in S_{n+1} if and only if exactly one of $a-1$ and a is in S_{n}. Show that there exist infinitely many integers N for which $S_{N}=S_{0} \cup\left\{N+a: a \in S_{0}\right\}$.

English Jokes that only intellectuals understand
A logician's wife is having a baby. The doctor immediately hands the newborn to the dad.
His wife asks impatiently: "So, is it a boy or a girl?"
The logician replies: "Yes".

Headlines from a Mathematical World

Unemployment Rate Jumps from 7.6% to 7.8%.
Mathematically Literate World: Unemployment Rate Probably a Little Under 8\%; Maybe Rising, or Not, Can't Really Tell.

Neither in the subjective nor in the objective world can we find a criterion for the reality of the number concept, because the first contains no such concept, and the second contains nothing that is free from the concept. How then can we arrive at a criterion? Not by evidence, for the dice of evidence are loaded. Not by logic, for logic has no existence independent of mathematics: it is only one phase of this multiplied necessity that we call mathematics. How then shall mathematical concepts be judged? They shall not be judged. Mathematics is the supreme arbiter. From its decisions there is no appeal. We cannot change the rules of the game, we cannot ascertain whether the game is fair. We can only study the player at his game; not, however, with the detached attitude of a bystander, for we are watching our own minds at play.

George Dantzig

Here's another good reason why the models shall be as simple as possible: if we're lucky, we can use the same model to study many different phenomena at once.

William Timothy Gowers
[Arithmetic] is one of the oldest branches, perhaps the very oldest branch, of human knowledge; and yet some of its most abstruse secrets lie close to its tritest truths.

Henry John Stephen Smith
...numbers have neither substance, nor meaning, nor qualities. They are nothing but marks, and all that is in them we have put into them by the simple rule of straight succession..

Hermann Klaus Hugo Weyl

One of the chief duties of a mathematician in acting as an advisor to scientists is to discourage them from expecting too much of mathematicians.

Norbert Wiener

	1 T	(1792) Nikolay Yvanovich Lobachevsky (1847) Christine Ladd-Franklin	RM083
	2 W	(1831) Paul David Gustav du Bois-Reymond (1901) George Frederick James Temple	
	3 T	(1903) Sidney Goldstein (1924) John Backus	
	4	(1795) Thomas Carlyle	
	5 S	(1868) Arnold Johannes Wilhelm Sommerfeld (1901) Werner Karl Heisenberg (1907) Giuseppe Occhialini	$\begin{aligned} & \text { RM155 } \\ & \text { RM122 } \\ & \hline \end{aligned}$
	6 S	(1682) Giulio Carlo Fagnano dei Toschi	
50	7 M	(1647) Giovanni Ceva (1823) Leopold Kronecker (1830) Antonio Luigi Gaudenzio Giuseppe Cremona (1924) Mary Ellen Rudin	RM150
	8 T	(1508) Regnier Gemma Frisius (1865) Jaques Salomon Hadamard (1919) Julia Bowman Robinson	
	9 W	(1883) Nikolai Nikolaievich Luzin (1906) Grace Brewster Murray Hopper (1917) Sergei Vasilovich Fomin	
	10 T	(1804) Karl Gustav Jacob Jacobi (1815) Augusta Ada King Countess Of Lovelace	RM059
	11 F	(1882) Max Born	RM155
	12 S	(1832) Peter Ludwig Mejdell Sylow (1913) Emma Castelnuovo	RM191
	13 S	(1724) Franz Ulrich Theodosius Aepinus (1887) George Polya	RM131
511	14 M	(1546) Tycho Brahe	
	15 T	(1802) János Bolyai (1923) Freeman John Dyson	RM083
	16 W	(1804) Wiktor Yakovievich Bunyakowsky	
	17 T	(1706) Gabrielle Emile Le Tonnelier de Breteuil du Chatelet (1835) Felice Casorati (1842) Marius Sophus Lie (1900) Dame Mary Lucy Cartwright	
	18 F	(1856) Joseph John Thomson (1917) Roger Lyndon (1942) Lenore Blum	RM161
	19 S	(1783) Charles Julien Brianchon (1854) Marcel Louis Brillouin (1887) Charles Galton Darwin	RM138
	20 S	(1494) Oronce Fine (1648) Tommaso Ceva (1875) Francesco Paolo Cantelli	
522	21 M	(1878) Jan Łukasiewicz (1921) Edith Hirsch Luchins (1932) John Robert Ringrose	
	22 T	(1824) Francesco Brioschi (1859) Otto Ludwig Hölder (1877) Tommaso Boggio (1887) Srinivasa Aiyangar Ramanujan	RM150
	23 W	(1872) Georgii Yurii Pfeiffer	
	24 T	(1822) Charles Hermite (1868) Emmanuel Lasker	RM095 RM167
	25 F	(1642) Isaac Newton (1900) Antoni Zygmund	RM071
	26 S	(1780) Mary Fairfax Greig Somerville (1791) Charles Babbage (1937) John Horton Conway	$\begin{aligned} & \text { RM059 } \\ & \text { RM119 } \end{aligned}$
	27 S	(1571) Johannes Kepler (1654) Jacob (Jacques) Bernoulli	RM093
532	28 M	(1808) Athanase Louis Victoire Duprè (1882) Arthur Stanley Eddington (1903) John von Neumann	RM179 RM107
	29 T	(1856) Thomas Jan Stieltjes	
	30 W	(1897) Stanislaw Saks	
		(1872) Volodymyr Levitsky (1896) Carl Ludwig Siegel (1945) Leonard Adleman (1952) Vaughan Frederick Randall Jones	RM143

December

Putnam 2000, B6

Let B a set of more than $\frac{2^{n+1}}{n}$ distinct point with coordinates of the form $(\pm 1, \pm 1, \ldots, \pm 1)$ in n-dimensional space with $n \geq 3$. Show that there are three distinct points in B which are the vertices of an equilateral triangle.
 -
English Jokes that only intellectuals understand
Jean-Paul Sartre is sitting at a French café, revising his draft of Being and Nothingness. He says to the waitress: "I'd like a cup of coffee, please. With no cream". The waitress replies: "I'm sorry, Monsieur, but we're out of cream. How about one with no milk?"

Headlines from a Mathematical World

Local Heat Wave Seen as Sign of Global Warming.
Mathematically Literate World: Local Heat Wave Not Seen as Meaningful Indicator of Global Trends.

I am now convinced that theoretical physics is actual philosophy.

Max Born

Now it is quite clear to me that there are no solid spheres in the heavens, and those that have been devised by the authors to save the appearances, exist only in the imagination.

Tycho Brahe

Math seems to provide us with a kind of new sense.
Charles Galton Darwin

To a physicist, mathematics is not only a tool through which you can compute the phenomena; it is the main source of concepts and principles, by which you create new theories.

Freeman John Dyson

We used to think that if we knew one, we knew two, because one and one are two. We are finding that we must learn a great deal more about 'and'.

Arthur Stanley Eddington

We are servants rather than masters in mathematics.
Charles Hermite

Nothing has afforded me so convincing a proof of the unity of the Deity as these purely mental conceptions of numerical and mathematical science which have been by slow degrees vouchsafed to man, and are still granted in these latter times by the Differential Calculus, now superseded by the Higher Algebra, all of which must have existed in that sublimely omniscient Mind from eternity.

Mary Fairfax Greig Somerville

